1. Examine function and draw a graph : $y=x e^{x}$

Domain

This function is everywhere defined, because e^{x} is defined for all x in the set R .
So: $x \in(-\infty, \infty)$. This immediately tells us that the function has no vertical asymptote!

Zero function

$y=0$
$x e^{x}=0 \rightarrow x=0$

To remind you that $e^{x}>0$ always.

Sign function

$y>0 \rightarrow x e^{x}>0 \rightarrow x>0$
$y<0 \rightarrow x e^{x}<0 \rightarrow x<0$

The diagram would look:

The function is only in blue field and the x -axis cuts only in $\mathrm{x}=0$.

Parity

$f(-x)=-x e^{-x}=\frac{-x}{e^{x}} \neq f(x)$
This tells us that the function is neither even nor odd.

$$
\begin{aligned}
& y=x e^{x} \\
& y^{\prime}=x^{`} e^{x}+\left(e^{x}\right)^{`} x \\
& y^{\prime}=1 e^{x}+e^{x} x \\
& y^{\prime}=e^{x}(1+x) \\
& y^{\prime}=0 \rightarrow e^{x}(1+x) \rightarrow 1+x=0 \rightarrow x=-1
\end{aligned}
$$

For $\mathrm{x}=-1 \quad$ is $y=(-1) e^{-1} \rightarrow \mathrm{y}=-\frac{1}{e}$
Thus, the extreme point is $M\left(-1,-\frac{1}{e}\right)$

What the sign of the first derivate depends on ?
As is $e^{x}>0$ always, the sign of the first derivate depends on $1+\mathrm{x}$

	$-\infty$	-1
$1+x$	-	+
$y^{`}$	-	+

Point M is then the minimum point.
convexity and concavity

$$
\begin{aligned}
& y=e^{x}(1+x) \\
& y^{\prime}=\left(e^{x}\right)^{`}(1+x)+(1+x)^{`} e^{x} \\
& y^{\prime \prime}=e^{x}(1+x)+e^{x} \\
& y^{\prime \prime}=e^{x}(x+2) \\
& y^{\prime \prime}=0 \\
& x+2=0 \rightarrow x=-2
\end{aligned}
$$

For $\mathrm{x}=-2$ is $y=-2 e^{-2}=\frac{-2}{e^{2}}$

We have point $P\left(-2,-2 e^{-2}\right)$.

Find that approximately $-2 e^{-2} \approx-0,27$

What the sign of the second derivate depends on?

As $e^{x}>0$ then depends on $x+2$

	$-\infty$	-2
$x+2$	-	+
y^{\prime}	-	+

Asymptote function (behavior functions at the ends of the field definition)

As we have said, there is no Vertical asymptote.

Horizontal asymptote

One small tip: If you have a function e^{x}, especially the work of $x \rightarrow+\infty$ and then $x \rightarrow-\infty$, because:
$e^{\infty}=\infty$
$e^{-\infty}=0$
So:
$\lim _{x \rightarrow+\infty} x e^{x}=\infty \cdot e^{\infty}=\infty \cdot \infty=\infty$
$\lim _{x \rightarrow-\infty} x e^{x}=-\infty \cdot e^{-\infty}=-\infty \cdot 0=$?
$\lim _{x \rightarrow-\infty} x e^{x}=\lim _{x \rightarrow-\infty} \frac{x}{e^{-x}}=\frac{-\infty}{e^{-(-\infty)}}=\frac{-\infty}{\infty}=l^{\prime}$ Hôpital $=\lim _{x \rightarrow-\infty} \frac{1}{-e^{-x}}=\frac{1}{-\infty}=0$
What does this tell us?
When $x \rightarrow+\infty$, there is no horizontal asymptote, but when $x \rightarrow-\infty$ horizontal asymptote is $\mathrm{y}=0$, ie,
When x approaches $-\infty$, the function approaches zero from below, from the negative side!

And to make the final graph:

2. Examine function and draw a graph : $y=\frac{e^{x}}{x}$

Domain

$x \neq 0 \rightarrow x \in(-\infty, 0) \cup(0, \infty)$

This means that the function in $\mathrm{x}=0$ has the potential vertical asymptote

Zero function

As we have said $e^{x}>0$, so the function has no zero (nowhere cuts x axis)

Sign function

It is clear that the sign functions depend only on x

$$
\begin{aligned}
& y>0 \rightarrow x>0 \\
& y<0 \rightarrow x<0
\end{aligned}
$$

Parity

$f(-x)=\frac{e^{-x}}{-x}=-\frac{1}{x e^{x}} \neq f(x)$
$y=\frac{e^{x}}{x}$
$y^{\prime}=\frac{\left(e^{x}\right)^{`} x-x^{`} e^{x}}{x^{2}}$
$y^{\prime}=\frac{e^{x} x-1 e^{x}}{x^{2}}$
$y^{\prime}=\frac{e^{x}(x-1)}{x^{2}}$
$y^{`}=0 \rightarrow e^{x}(x-1)=0 \rightarrow x-1=0 \rightarrow x=1$
$\underline{\text { For } \mathrm{x}=1}$ is $y=\frac{e^{1}}{1} \rightarrow y=e$
$M(1, e)$ is extreme point

As is $x^{2}>0$ and $\mathrm{e}^{x}>0$ we conclude that the sign of the first derivate depends only on $\mathrm{x}-1$

	$-\infty$	1
$\mathrm{x}-1$	-	+
$\mathrm{y}^{`}$	-	+
	-	

Point M is then the minimum point!

convexity and concavity

$y^{\prime}=\frac{e^{x}(x-1)}{x^{2}}$
$y^{\prime \prime}=\frac{\left[e^{x}(x-1)\right] \cdot x^{2}-\left(x^{2}\right)^{\prime} \cdot e^{x}(x-1)}{x^{4}}$
$y^{\prime}=\frac{\left[\left(e^{x}\right)^{`}(x-1)+(x-1)^{`} e^{x}\right] \cdot x^{2}-2 x \cdot e^{x}(x-1)}{x^{4}}$
$y^{\prime}=\frac{\left[e^{x}(x-1)+1 e^{x}\right] \cdot x^{2}-2 x \cdot e^{x}(x-1)}{x^{4}}$
$y^{\prime}=\frac{\left[e^{x} x-1 e^{x}+1 e^{x}\right] \cdot x^{2}-2 x \cdot e^{x}(x-1)}{x^{4}} \frac{e^{x} x \cdot x^{2}-2 x \cdot e^{x}(x-1)}{x^{4}}=\frac{e^{x} \not x \cdot\left(x^{2}-2(x-1)\right)}{x^{4}}$
$y^{\prime}=\frac{e^{x}\left(x^{2}-2 x+2\right)}{x^{3}}$

$$
y^{\prime \prime}=0 \rightarrow x^{2}-2 x+2=0
$$

This quadratic equation has no solution, because it is $\mathrm{D}<0$ and $a>0$.

So: $\quad x^{2}-2 x+2>0$

Asymptote function (behavior functions at the ends of the field definition)

Vertical asymptote
$\lim _{x \rightarrow 0+\varepsilon} \frac{e^{x}}{x}=\frac{e^{0}}{0+\varepsilon}=\frac{1}{+\varepsilon}=+\infty \quad$ (Blue line)
$\lim _{x \rightarrow 0-\varepsilon} \frac{e^{x}}{x}=\frac{e^{0}}{0-\varepsilon}=\frac{1}{-\varepsilon}=-\infty \quad$ (Yellow line)

Horizontal asymptote

$\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=\frac{e^{\infty}}{\infty}=\frac{\infty}{\infty}=l^{\prime}$ Hôpital $=\lim _{x \rightarrow+\infty} \frac{\left(e^{x}\right)^{\prime}}{x^{\prime}}=\lim _{x \rightarrow+\infty} \frac{e^{x}}{1}=e^{\infty}=\infty \quad$ (Black line)
$\lim _{x \rightarrow-\infty} \frac{e^{x}}{x}=\frac{e^{-\infty}}{-\infty}=\frac{0}{-\infty}=0_{-} \quad($ Red line $)$

Therefore, the function has a horizontal asymptote $y=0$ but only on the left

The final graph looks like:

3. Examine function and draw a graph : $y=x \cdot e^{\frac{1}{x-2}}$

Domain

$x-2 \neq 0 \rightarrow x \neq 2 \rightarrow x \in(-\infty, 2) \cup(2, \infty)$

Zero function

$y=0 \rightarrow x \cdot e^{\frac{1}{x-2}}=0 \rightarrow x=0$ because $e^{\frac{1}{x-2}}>0$ always

Sign function

As is $e^{\frac{1}{x-2}}>0$, concludes that the sign function depends only on $\mathrm{x}-2$
$y>0$ when $x-2>0$, then $x>2$
$\mathrm{y}<0$ when $\mathrm{x}-2<0$, then $\mathrm{x}<2$

The function is only found in the yellow areas.

Parity

$f(-x)=-x \cdot e^{\frac{1}{-x-2}} \neq f(x)$

Extreme values (max and min) and monotonic function (increasing and decreasing)

$y=x \cdot e^{\frac{1}{x-2}}$ $\left(e^{\Theta}\right)^{\prime}=e^{\Theta} \cdot \Theta^{`}$
$y^{\prime}=1 \cdot e^{\frac{1}{x-2}}+\left(e^{\frac{1}{x-2}}\right)^{\prime} \cdot x$
$y^{\prime}=e^{\frac{1}{x-2}}+e^{\frac{1}{x-2}} \cdot\left(\frac{1}{x-2}\right)^{\prime} \cdot x$
$y^{\prime}=e^{\frac{1}{x-2}}+e^{\frac{1}{x-2}} \cdot\left(-\frac{1}{(x-2)^{2}}\right) \cdot x=e^{\frac{1}{x-2}}-e^{\frac{1}{x-2}} \cdot \frac{1}{(x-2)^{2}} \cdot x=e^{\frac{1}{x-2}} \cdot\left(1-\frac{x}{(x-2)^{2}}\right)=e^{\frac{1}{x-2}} \cdot \frac{(x-2)^{2}-x}{(x-2)^{2}}$
$y^{\prime}=e^{\frac{1}{x-2}} \cdot \frac{x^{2}-4 x+4-x}{(x-2)^{2}}$
$y^{\prime}=e^{\frac{1}{x-2}} \cdot \frac{x^{2}-5 x+4}{(x-2)^{2}}$
$y^{\prime}=0 \rightarrow x^{2}-5 x+4=0 \rightarrow x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \rightarrow x_{1}=1 ; x_{2}=4$

For $\mathrm{x}=1$
$y=1 \cdot e^{\frac{1}{1-2}}=e^{-1}=\frac{1}{e} \rightarrow M_{1}=\left(1, \frac{1}{e}\right)$

For $\mathrm{x}=4$
$y=4 \cdot e^{\frac{1}{4-2}}=4 e^{\frac{1}{2}}=4 \sqrt{e} \rightarrow M_{2}=(4,4 \sqrt{e})$

What the sign of the first derivate depends on ?
As is $e^{\frac{1}{x-2}}>0$ and $(x-2)^{2}>0$, sign of the first derivate depends on $x^{2}-5 x+4$

	1		4	
$x-1$	-	+	+	
$x-4$	-	-	+	
y	+	-	+	

convexity and concavity
$y^{\prime}=e^{\frac{1}{x-2}} \cdot \frac{x^{2}-5 x+4}{(x-2)^{2}}$
$y^{\prime}=\left(e^{\frac{1}{x-2}}\right) \cdot \frac{x^{2}-5 x+4}{(x-2)^{2}}+\left(\frac{x^{2}-5 x+4}{(x-2)^{2}}\right) e^{\frac{1}{x-2}}$
$y^{\prime \prime}=e^{\frac{1}{x-2}} \cdot\left(-\frac{1}{(x-2)^{2}}\right) \cdot \frac{x^{2}-5 x+4}{(x-2)^{2}}+\frac{\left(x^{2}-5 x+4\right)^{`} \cdot(x-2)^{2}-\left((x-2)^{2}\right)^{`} \cdot\left(x^{2}-5 x+4\right)}{(x-2)^{4}} \cdot e^{\frac{1}{x-2}}$
We get :
$y^{\prime}=\frac{5 x-8}{(x-2)^{4}} \cdot e^{\frac{1}{x-2}}$
$y^{\prime \prime}=0 \rightarrow 5 x-8=0 \rightarrow x=\frac{8}{5}$
For $x=\frac{8}{5} \rightarrow y=\frac{8}{5} \cdot e^{\frac{1}{\frac{8}{5}-2}} \rightarrow y=\frac{8}{5} \cdot e^{\frac{1}{-\frac{2}{5}}} \rightarrow y=\frac{8}{5} \cdot e^{-\frac{5}{2}}$
So : $P\left(\frac{8}{5}, \frac{8}{5} \cdot e^{-\frac{5}{2}}\right)$

What the sign of the second derivate depends on?
Sign of the second derivate depends on $5 x-8$

Asymptote function (behavior functions at the ends of the field definition)

Vertical asymptote
$y=x \cdot e^{\frac{1}{x-2}}$
$\lim _{x \rightarrow 2+\varepsilon} x e^{\frac{1}{x-2}}=2 \cdot e^{\frac{1}{2+\varepsilon-2}}=2 \cdot e^{\frac{1}{+\varepsilon}}=2 \cdot e^{\infty}=\infty \quad$ (Yellow line)
$\lim _{x \rightarrow 2-\varepsilon} x e^{\frac{1}{x-2}}=2 \cdot e^{\frac{1}{2-\varepsilon-2}}=2 \cdot e^{\frac{1}{-\varepsilon}}=2 \cdot e^{-\infty}=2 \cdot 0=0 \quad$ (blue arrow)

Horizontal asymptote

$\lim _{x \rightarrow+\infty} x e^{\frac{1}{x-2}}=\infty \cdot e^{\frac{1}{\infty-2}}=\infty \cdot e^{\frac{1}{\infty}}=\infty \cdot e^{0}=\infty \cdot 1=\infty$
$\lim _{x \rightarrow-\infty} x e^{\frac{1}{x-2}}=-\infty \cdot e^{\frac{1}{-\infty-2}}=-\infty \cdot e^{\frac{1}{-\infty}}=-\infty \cdot e^{0}=-\infty \cdot 1=-\infty$

No horizontal asymptotes, and we must examine whether there is oblique asymptote ...
Oblique asymptote
$\mathrm{y}=\mathrm{kx}+\mathrm{n}$
$k=\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{x e^{\frac{1}{x-2}}}{x}=\lim _{x \rightarrow \pm \infty} e^{\frac{1}{x-2}}=e^{\frac{1}{\infty-2}}=e^{0}=1$
$n=\lim _{x \rightarrow \pm \infty}[f(x)-k x]=\lim _{x \rightarrow \pm \infty}\left[x e^{\frac{1}{x-2}}-1 \cdot x\right]=\lim _{x \rightarrow \pm \infty} x\left(e^{\frac{1}{x-2}}-1\right)=\infty \cdot 0=$?
$=\lim _{x \rightarrow \pm \infty} \frac{e^{\frac{1}{x-2}}-1}{\frac{1}{x}}=\frac{0}{0}=\lim _{x \rightarrow \pm \infty} \frac{e^{\frac{1}{x-2}} \cdot\left(-\frac{1}{(x-2)^{2}}\right)}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \pm \infty} e^{\frac{1}{x-2}} \cdot \frac{x^{2}}{(x-2)^{2}}=\lim _{x \rightarrow \pm \infty} e^{\frac{1}{x-2}} \cdot \lim _{x \rightarrow \pm \infty} \frac{x^{2}}{(x-2)^{2}}=1 \cdot 1=1$
We have oblique asymptote :
$\mathrm{y}=\mathrm{kx}+\mathrm{n} \quad$ so: $\quad \mathrm{y}=\mathrm{x}+1$

For $\mathrm{x}=0$
$y=0+1=1$

For $\mathrm{y}=0$
$0=x+1 \rightarrow x=-1$

x	0	-1
y	1	0

And to conclude the final graph:

